Stepwise binding and bending of DNA by Escherichia coli integration host factor.
نویسندگان
چکیده
Integration host factor (IHF) is a prokaryotic protein required for the integration of lambda phage DNA into its host genome. An x-ray crystal structure of the complex shows that IHF binds to the minor groove of DNA and bends the double helix by 160 degrees [Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Cell 87:1295-1306]. We sought to dissect the complex formation process into its component binding and bending reaction steps, using stopped-flow fluorimetry to observe changes in resonance energy transfer between DNA-bound dyes, which in turn reflect distance changes upon bending. Different DNA substrates that are likely to increase or decrease the DNA bending rate were studied, including one with a nick in a critical kink position, and a substrate with longer DNA ends to increase hydrodynamic friction during bending. Kinetic experiments were carried out under pseudofirst-order conditions, in which the protein concentration is in substantial excess over DNA. At lower concentrations, the reaction rate rises linearly with protein concentration, implying rate limitation by the bimolecular reaction step. At high concentrations the rate reaches a plateau value, which strongly depends on temperature and the nature of the DNA substrate. We ascribe this reaction limit to the DNA bending rate and propose that complex formation is sequential at high concentration: IHF binds rapidly to DNA, followed by slower DNA bending. Our observations on the bending step kinetics are in agreement with results using the temperature-jump kinetic method.
منابع مشابه
Examining the contribution of a dA+dT element to the conformation of Escherichia coli integration host factor-DNA complexes.
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can af...
متن کاملDNA bending and twisting properties of integration host factor determined by DNA cyclization.
The binding of many proteins to DNA is profoundly affected by DNA bending, twisting, and supercoiling. When protein binding alters DNA conformation, interaction between inherent and induced DNA conformation can affect protein binding affinity and specificity. Integration host factor (IHF), a sequence-specific, DNA-binding protein of Escherichia coli, strongly bends the DNA upon binding. To asse...
متن کاملPlatform for in situ real-time measurement of protein-induced conformational changes of DNA.
A platform for in situ and real-time measurement of protein-induced conformational changes in dsDNA is presented. We combine electrical orientation of surface-bound dsDNA probes with an optical technique to measure the kinetics of DNA conformational changes. The sequence-specific Escherichia coli integration host factor is utilized to demonstrate protein-induced bending upon binding of integrat...
متن کاملAsymmetric positioning of Cas1–2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system
CRISPR-Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The ...
متن کاملSymmetry and asymmetry in the function of Escherichia coli integration host factor: implications for target identification by DNA-binding proteins.
BACKGROUND Escherichia coli integration host factor (IHF) is a DNA-binding protein that participates in a wide variety of biochemical functions. In many of its activities, IHF appears to act as an architectural element, dramatically distorting the conformation of bound DNA. IHF is a dimer of non-identical subunits, each about 90 amino acids long. One dimer interacts specifically with a 30 base ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 49 شماره
صفحات -
تاریخ انتشار 2006